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Some method of constructing a u-stable bridge is described. A class 
of games with an integral constraint is indicated, in application to which 

this method permits the construction of the u-stable bridge in an expli- 
cit form. Following the scheme presented in [l-3], the first player’s 

strategy extremal to the u-stable bridge can be constructed, ensuring 
that the game’s position hits the terminal set. 

1. The motion of vector z in a k-dimensional Euclidean space R” is subject 

to the equation 

z’ = cz + Nu + v, u E RI, v E Q Q.1) 

Here c is a constant k X k-*matrix, R I 1s an Z-dimensional Euclidean space, N 
is a constant k X I-matrix, Q is d convex compactum in R”. The integral 
constraint 

p (t) = PO - s 1 u (z) 12 dz > 0 

(1.2) 

0 

is imposed on the choice of control u . Here 1 U 1 is tne Euclidean norm of vector 
u dnd cl0 is some positive constant. The set of numbers p > 0 is denoted by 
1. Then R’ X I implies the direct product of Rk and 1 and the game position 

is a point [z, ~1 from Rk X 1 . An m-dimensional Euclidean space R” (??z,< k) 
and a linear mapping 32: of space Rk into R” are assumed given. 

A terminal set 2 is singled out in R” X 1, having the form: 
(1.3) 

2 = {[z, PI: x2 = 0, p a o> 

In order to formulate a u-stability condition [l-3] in a form convenient later on, fo- 
llowing [4] we introduce a multiple-valued mapping T, (X). 
Let X be some closed set in Rk X J and let B > 0. Then T, (X) is the set of 
positions [zo, po] for each of which we can find, from any control u (t) E Q me- 
asurable on the interval IO, (31 , a measurable control u (t) satisfying constraint 

(1.2) for 0 < t < u, such that [z, (cr), p (o)] EX. Here [z ((T), Al. (u)] is the 
game’s position at the instant 0. 
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For a given number tr > 0 we are required to construct a family of non-empty 

closed sets w (t) C R’ X 1, defined for 0 \< t < t, and satisfying the conditions 
W (0) C Z and 

W (t) c T, (W (t - 4) for 0 < o < t < rr 
(1.4) 

Mapping T ~‘possesses a number of properties [4]. The following properties will be 

used in Sect. 2. 

Property 1. T,, (To, (X)) C To,+,, (X) 
Property 2. T, (X) C To (XJ when X C XI 
Property 3. If X is closed and T, (X) # 0 , then To (X) is closed. 

2. We describe one method for constructing a u-,stable bridge. Let a closed set 

Y be given in a q-dimensional linear normed space Rq , with the norm 11 y 11, 

Y E R’. We assume that a nonempty closed set B (t, y) ,C R” x I has been 
defined for each y E Y and t > 0 . 

Condition ‘1. If the sequence of vectors yn E Y converges to vector y E Y 
and the point [z, ~1 belongs to set B (t, y), then there exists a sequence of points 

[Z n, p,l E B (t, YJ which converges to point [z, ~1. 
Let a number e > 0 be given and let a function f ((T, t, y) with values in set Y 

be defined for any y E Y, t > 0, 0 ( (T g E . 
Condition B. The inclusion T, (B (t, y)) 3 B (t f 0, f (u, t, y)) is fulfilled 

for any y E Y, t > 0, 0 < CT & E , 
Condition C. A continuous q-dimensional vector function F (t, y) is defined 
for all y E Y and t > 0 , such that the equality 

lim (f (q, ti, yi> - yd / G = F tt, Y) (2.1) 
i-m 

is fulfilled for any sequences of yi E y, ti > 0 and 0 ( oi & e converging 

to y, t and 0, respectively. 

Theorem 1. Through the point y. E Y let there pass the solution y (t) E 
Y , unique on the interval [O, t,] , of the Cauchy problem 

Y’ = F (4 Y), Y (0) = YO 
(2.2) 

Then the family of sets w (t) = B (t, y (t)) satisfies inclusion (1.4). 
Note. The uniqueness of the solution y (t) for 0 & t & t, is understood in 

the sense that if Y, (t) E Y is a solution of problem (2.2) for 0 < t & t, and 
t2 < tl, then y, (t) = y (t) for 0 & t & t,. 

Proof of the theorem. We fix a number y > 0 and we consider the clo- 

sed bounded set 

YI = {Y E y: II Y - Y 0) II G Y for 0 & t < tJ (2.3) 

As follows from Condition C, a number 0 < &o < E exists such that 
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II f (G 4 Y> - Y II G (WI / 80 for 

O<osg~o 
y E y,, 0 < t ( t 

11 (2.4) 

We take any numbers 0 & to < t, & tl satisfying the condition o = t, - to & 
r,. Let us show that 

T, (B (to, Y fto))) =, B (kc Y NJ> 
GL 5) 

From this it will follow that the set w (t) = B (t, y (t)) satisfies inclusion (1.4) for 

o&t&t, and 0 < u < min (eo; t). Applying properties 1 and 2 of mapping 

To, we can have that inclusion (1.4) is fulfilled for all o<a<tgt,. 
We partition interval it,, t,] into n equal parts of length & = (3 / n , and 

consider the finite collection of vectors 

Yn (0) = Y (to), * ’ *t Yn (i) = f (o’n, to + i% ?ln (i - I)), i = 1, . . ., n (2.6) 

As follows from Condition B and from properties 1 and 2 of mapping T,, the inclusion 

To (B (to, Y (to))) II B (tst yn (n>) (2.7) 

is fulfilled for each fi . According to property 3 of mapping To, the set consisting 
of the left-hand side of inclusion (2.7) is closed. Therefore, as follows from Condition 

A, to prove inclusion (2.5) it is suf~cient to show that some subsequence of the sequence 
of vectors yn (n) converges to vector y (ts). For each n the vectors (2.6) possess 
the following properties 

yn(i)EYl, /I &In(i) - yn(i-- 1) (1 ,<(%y)/Eo, i = 13 *. .? n (2.8) 

These properties are proved by induction over i with the use of inequality (2.4) and of 

the definition of set (2.3). 
For to < t & t, we define the polygonal line 

(i - 1) oil < t - to < iolL 

X, (t) -= yn (n) for t -= t, 

The function 5, (1) is continuous for to & t & ts and, as follows from inequality 

(2.3). II G’ (t) I[ 4 ‘f / ‘~0 for almost all to-& t & t,. Hence it follows that fun- 
ction IC, (t) satisfies a Lipschitz condition &th constant y / so. Therefore , the 

sequence of functions X% (t) satisfies the hypothesis of Arzels theorem. Therefore 
(passing, if necessary to a subsequence). we can reckon that the sequence x, (t) con- 

verges to some function 2 (t). The limit function 5 (t) also satisfies a Lipschitz con- 
dition with the same constant y / eo- Therefore, its derivative exists almost everywhe- 

re for t, < t & t, . In addition, it follows from inclusion (2.8) and from the first 
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equality in (2.6) that 

J: (to) = Y (kJ7 .I. (f) E Y1 c Y for t, < 1 < t, 

Let us show that 

x’(t) = F (t, x(t)) for t, < t < t, 

Let the derivative z’ (t) exist at the point t, ,( t < tz . The equality 

(x. (t + h) - x(t)) /h = lim 5 x,‘(t + hr) dr 
It-co o 
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(2.10) 

(2.11) 

(2.12) 

is fulfilled for any 0 < h < t, - t . From formulas (2.6) and (2.9) it follows that 
the equality 

3~: (t + hT) = (f (a,, t, + %I%, 5, (to + ‘6&l)) - &I (tll + (2.13) 

%I%)) / on 

is fulfilled for almost all 0 < -c & 1 . Here ‘& denotes the integer part of number 
(t + h7 - to) i CT,,. Since the number sequence Go, converges to t + 
ht - t, as n 3 00 and the sequence of functions z, (t) converges uniformly to 

5 (0, we have lim 5, (t, + ~,,u~~) = x (t + ht) as n +- 00. Therefore, from 
equality (2.13) and Condition C it follows that for almost all 0 & T & 1 the sequence 
of z,’ (t + ha) converges to F (t + hT, x (t + k)) as n 3 00. In addition, 

II &I’ (t + h-c) II G Y / eo. Consequently, applying Lebesgue‘s theorem [5] to equali- 
ty (2.12), we obtain 

(x (t + h) - 2 (t)) /h = 5 F (t + hz, (x’ (t + hz)) dt 
n 

Passing in the latter equality to the limit as h + 0 and using the continuity of fun- 
ction F (t, y) for t > 0 and y E Y and also using inclusion (2. lo), we obtain 
(2.11). Therefore, equality (2.11) is fulfilled for almost all to & t & t,. From the 
continuity of function F (t, y) it follows that it is fulfilled fo; all to < t & t,. 
Therefore, allowing for relation (2.10) and for the uniqueness condition of the solution 

of problem (2.2) when 0 & t & t,, we obtain the equality x (t) = y (t) for all 

t, & t & t,. Thus we have proved that a subsequence of the sequence of vectors 

Yn (n> = &I (k) exists converging to vector Y (ta). 
3. We construct a u-stable bridge w (t) for the game in Sect. 1 under the fo- 

llowing assumptions: 

1”. netCQ = o(t)U, o(t)),0 for t>o 
2”. {aU+Nu: lul<l}=:fJ(t)S, p(t)> 0 for t>o 
3”. SXvU#jzJ for o<~<l 

Here Li and 8 are convex compacta in R”’ and S is symmetric relative to the origin 

and contains the null vector as an interior point; S * VU is the geometric difference 

[6] of sets S and vu; CL (t) and p (t) are continuous scalar functions. We note first 

of all that functions a (t) and fi (t) can vanish only at isolated points. Otherwise it 
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can be shown that the are idendcally zero. 
Assumption 4”. P . unctions CC \t) and 8 (ti are not identicallv zero and lim [cc. 

(4 / P ml- = P ct> 
, .c I 

as ‘G --t t, where p (t) is a function continuous when 
We introduce the notation 

n, (t) = fee”: 

t>,b. 

(3.1) 

Then from assumptions 1” and 2” we can obtain 

For each t > 0, yr > 0, y2 > 0 and cs > 0 we set 

B (t, yl, y2) = {b, ~1: n, (t)z E y, (t.l”‘s A y&h El“‘> yd 

fl(0, t, y1, y2) = (YIY2 + f-pwg / fz(a, f, Yl? Y2) 

(3.2) 

(3.3) 

(3.41 

(3.5) 

(3.6) 

Lemma. T, (B (t, .!!I, A) 2 B (t + @, fr (a* t, hr id, f2 f% 4 Yl, Id). 

Proof. Let a point 1% ~1 belong to the set on the right-hand side of the inclu- 
sion to be proved. Then from (3.4) and (3.6) it follows that 

It1 (t + 0) z E fl (0, t, Yl, Y2> bV'S -1L f2 (a, t, Y19 !A u> 
(3.7) 

p > f2 (CT, f, Y1t YJ > 9‘2 (3.3) 

From the definition of mapping T,, from the form of set (3.4). and also from equali- 
ties (3.1) - (3.3) it follows that the point [z, ~1 belongs to set T, (B (t, Yr, Ys)) 
if the inclusion 

is fulfilled for some p 2 0 and (p - p)“% > !/a . Here 

El = Y, (CL - P)i’p, 6, = YlY2 

t+a 

Q z ip s Btj+)dt)sh, 62 = ~~~~~~~~~ 

I t 

(3.10) 

We now indicate a number p > 0 satisfying the condition (r-1 - P)“’ > ya for 
which the set on the right-hand side of inclusion (3.9) coincides with the set on the 
right-hand side of inclusion (3.7). We set 

p = p(l- bz2 / fz” (6, t, YlDt ?f,l) > 0 (3.11) 
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Then, as follows from inequality (3.8) 

Substituting this value of p into relation (3.10) and using notation (3.6), we can obtain 
the equality 816s = 6261. Hence it follows that 8, = ‘p”s and 6, = ‘p6a for some 

cp > 0. Therefore, the set on the right-hand side of inclusion (3.9) has the form 

In [4,7], when proving the equality To,+,, = T,,T,, for a game with a simple 
motion, it was shown that a set of form (3.12) equals 

(rpE2 + E2) s 2 (96, + 6,) u = (8, + 8%) s z (61 + 62) u 13* 13) 

Substituting the values of p from (3.11) into formulas (3.10) and using notation (3.5) 

and (3.6), we obtain el + &2 = l_r.*‘* fl (a, t, Yl, Y2j and 6, $_ 6, = fl (a, 
t, ~1, &-f2 (a, t, p,, y2). Consequently, set (3.13) and, therefore, the right-hand 
side of inclusion (3.9), coincide with the set on the right-hand side of inclusion (3.7). 

Thus, Condition B from Sect. 2 is fulfilled and the vector function f (a, t, y) has been 

defined for t > 0, (I > 0, y, > 0 and y, > 0 by relations (3.5) and (3.6). From 
relations (3.5) and (3.6) and from assumption 4” we can obtain that limit (2.1) has the 
form 

F, (t, Yl, Y2) = - b (0 / 2 Y221 + a 0) / Y2 (3.14) 

F, (t, ~11 ~2) = P (t> / 2~2 

for t > 0, y1 > 0 and y2 > 0 . These functions are not defined when y, = 0. 
Therefore, we fix an arbitrary number 6 > 0 and as the set Y for which Conditions 
A, B and C were formulated in Sect. 2 we consider y, > 0, y.. > 6. Then functions 
(3.5), (3.6) and (3.14) and the family of sets (3.4) satisfy Conditions B and C on this 
set Y . 

By assumption set s contains the null vector as an interior point. Using this we 
can show that the family of sets (3.4) satisfies Condition A. 
Let Yl (t) and y, (t) satisfy Eq.(2.2) with right-hand side (3.14) and initial conditions 

y;(0) =0, y,(0)=6. Th en on the basis of Theorem 1 the family of sets I%’ (t), 

which is obtained from (3.4) under the substitution Y, = Y, (t) and y, = y, (t), 
satisfies inclusion (1.4). In addition, as is seen from’( 1.3) and (3.4), W (0) = B (0, 

0, 6) C 2. Thus, the family of sets w (t) found is a u-stable bridge leading 
onto target (1.3). 
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